Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts w/titanium interference screws:

- Adapteur Drill Guide C-Ring AR-1875
- Graduated Guide Pin Sleeve for 2.4 mm Pins AR-1876
- Target POP Marking Hook, left AR-1866
- Target POP Marking Hook, right AR-1867
- Pin Simulator Tibial Marking Hook, 60˚ AR-1878GP-60
- Transtibial Femoral ACL Drill Guide (TTG), 7 mm AR-1801
- Parallel Guide Sleeve, 2.4 mm Pins AR-1245L
- Cannulated Headed Reamer, 9 mm AR-1409
- Cannulated Headed Reamer, 10 mm AR-1410
- Cannulated Headed Reamer, 11 mm AR-1411
- Cannulated Drill, 9 mm AR-1209L
- Cannulated Drill, 10 mm AR-1214L
- Cannulated Drill, 11 mm AR-1217L
- Graft Harvesting Cutting Guide, 8.5 mm width AR-1809
- Graft Harvesting Cutting Guide, 9.5 mm width AR-1810
- Graft Harvesting Cutting Guide, 10.5 mm width AR-1811
- Graft Harvesting Rasp AR-1802
- Notchplasty Rasp, 8 mm AR-1282
- PinLock II Cannulated Screwdriver, 3.5 mm hex AR-1896
- ACL Instrumentation Case (with silicon mat base) AR-1817

Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts w/bioabsorbable PLLA interference screws:

- Ratcheting Screwdriver Handle AR-1999
- Cannulated Screwdriver Shaft for Bio-Interference Screw (femoral) AR-1997
- Cannulated Screwdriver Shaft for Bio-Interference Screw, Short (tibial) AR-1997SH
- Easy-In (stripped screw inserter) AR-1993
- Easy-Out (stripped screw extractor) AR-1994
- Tunnel Notcher for Bio-Interference Screw AR-1845

Graft Prep Station for BTB Grafts:

- Graft Prep Station Base AR-2950
- Graft Workstation Posts for BTB Grafts AR-1959
- Graft Sizing Block, 6-12 mm diameters in 0.5 increments AR-1886

Transtibial ACL Reconstruction Disposables:

- ACL Disposables Kit, with Saw Blade, includes:
 - 2 each Threaded Fixation Pins
 - 1 each Hall Style Sagittal Saw Blade (other blade styles available)
 - Graft Pin w/16.0 mm 2.4 mm
 - Drill Tip Guide Pin, 2.4 mm
 - Guide Pin w/25 and 30 mm depth markings, 2.0 mm
 - Nitinol Guide Pin for Bio-Interference Screw, 1.1 mm
 - Tibial Tunnel Cannula Backflow Cap
 - Marking Ruler, 153 mm
 - Sterile marking pen, sterile, single use

- ACL Disposables Kit, without Saw Blade (includes all items in kit A0-1985 except saw blade) AR-1897
- Graft Harvesting Cutting Guide, 6, 8, 10 & 12 mm, cf. 3.0 mm
- Guide Pin w/Suture Eye, 2.4 mm
- Guide Pin w/Suture Eye, 2.0 mm
- Guide Wire Introducer, 1.1 mm (for Bio-Interference Screw) AR-4069
- Guide Wires Introducer, Stainless Steel, 0.038"
- #2 FiberWire, 38 inches w/Tapered Needle, box of 12 ea. AR-7200

Transtibial ACL Harvesting Cutting Guides:

- OATS Harvester Set, 8 & 9 mm, sterile, single use AR-1980-08S
- OATS Harvester Set, 9 & 10 mm, sterile, single use AR-1980-09S
- OATS Harvester Set, 10 & 11 mm, sterile, single use AR-1980-10S

Femoral Tunnel Bone Graft Harvesting (optional):

- OATS Harvester Set, 8 & 9 mm, sterile, single use AR-1980-08S
- OATS Harvester Set, 9 & 10 mm, sterile, single use AR-1980-09S
- OATS Harvester Set, 10 & 11 mm, sterile, single use AR-1980-10S

This description of technique is provided as an educational tool and should not be used as, or construed as, medical, technical, or legal advice. The described procedure includes a surgical technique, a medical device, and an associated kit. It is intended for use by healthcare professionals who are properly licensed to perform the procedures described in this document.

Refer to the latest Product Catalog or comprehensive knee brochure (LB0115) for specific screw types and sizes, plus additional ACL reconstruction instrumentation accessories.

Arthrex, Inc. - ACL rights reserved 2011/12

©2011, Arthrex Inc. All rights reserved. LB0115E

Transtibial ACL Reconstruction System for BTB Grafts

Surgical Technique

Designed in conjunction with John C. Garrett, M.D., Atlanta, GA
The Transtibial ACL Reconstruction System offers the orthopaedic surgeon instrumentation which provides reliable, reproducible ACL tunnel and socket placement by referencing anatomical constants.

The Arthrex Transtibial ACL Reconstruction System, the Gold Standard in BTB ACL reconstruction...

...provides superior fixation of the graft against the posterior rim of the femoral socket and eliminates migration of the graft to the backwall.

The cortical bone is drilled to a depth of 1 cm with a Headed Reamer 1 mm larger in diameter than the desired Coring Reamer. The appropriate diameter Coring Reamer is introduced over the guide pin and fully seated in the tibial tunnel. The Coring Reamer also determines hinge depth in the femur while creating a smooth socket rim. After the wound is irrigated, the guide pin exiting the drill handle is tapped to seat the guide pin. The guide pin is left in the socket and up to 11 mm may be used to harvest the desired amount of bone. After harvest, bone blocks are sized with #2 BioComposite saw guides and confirmed with the graft ring block and the graft placed into the graft pop workstations. A masculine blue line is created at the tibial tunnel diameter.

A special saw blade with 7 mm depth stop is used to create a 25 mm length bone block. The Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A sterile bone block is inserted through the anteromedial portal with the help of a mallet until the laser depth mark is flush with the femoral socket. The guide pin, screwdriver and excess bone are removed. The scaffolded titanium, round head Bio-Interference or BioComposite Screw (inset), 2 mm smaller than the tunnel diameter, is placed through the anteromedial portal with the sheath positioned to condition the graft prior to tibial fixation. The knee is placed to at least 120˚ of flexion and the 2 mm Socketing Cannula and the tip placed against the over-the-top position. Following tibial fixation, a full range of motion and ligament stability tests should be carried out to confirm full graft implantation.

A sheath is inserted in the femoral socket with the Tunnel Puncher or Femoral Guide, a cannulated holder for the Femoral Guide, and the Femoral Guide is inserted through the anteromedial portal. The notcher is tapped lightly with a mallet until the needle point of the notcher is flush with the femoral socket rim. The sheath window is positioned superiorly to provide clear visualization during screw insertion. The cannulated BioComposite Screw Handle with appropriate depth is inserted over the guide pin and into the sheath to engage the screw. The hole is inserted and the screw is driven to a depth of 25 mm with the appropriate depth markings. The #2 FiberWire sutures are placed in the suture eye of the graft.

The knee is placed to at least 120˚ of flexion and the 2 mm Guide Pin is inserted through the anteromedial portal up to the wound depth. The 1 mm diameter guide pin is inserted 1 mm from the guide pin placement by referencing the over-the-top position to reliably reproduce the ACL/PCL relationship. This is the first step in reproducible ACL tunnel and socket placement by referencing the PCL is preferred as an anatomic constant for precise, reproducible ACL tunnel and socket placement.

The appropriate diameter Coring Reamer is inserted through the femoral tunnel and fully seated in the tibial tunnel. The Collared Pin is inserted over the guide pin through the anteromedial portal with the sheath positioned to condition the graft prior to tibial fixation. The scaffolded titanium, round head Bio-Interference Screw (inset), 2 mm smaller than the tunnel diameter, is placed through the anteromedial portal with the sheath positioned to condition the graft prior to tibial fixation. The #2 FiberWire sutures are removed.

A special C-arm introduction cannula is used to create the femoral tunnel and past the PCL. A drilling depth of 30 mm is confirmed with the 5 mm graduated depth markings to fully accommodate the 25 mm length bone block. The guide pin is placed through the antero-medial portal. The Reamer is inserted over the guide pin through the antero-medial portal with the sheath positioned to condition the graft prior to tibial fixation. The scaffolded titanium, round head Bio-Interference or BioComposite Screws, to ease interference to avoid backwall blow-out. The guide pin is removed and replaced with a Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A special saw blade with 7 mm depth stop is used to create a 25 mm length bone block. The Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A laser line is created at the tibial tunnel diameter. It is also recommended to monitor the implantation depth of the screw to avoid backwall blow-out. The guide pin is inserted over the guide pin and into the sheath to engage the screw. The hole is inserted and the screw is driven to a depth of 25 mm with the appropriate depth markings. The #2 FiberWire sutures are removed.

A special saw blade with 7 mm depth stop is used to create a 25 mm length bone block. The Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A sheath is inserted in the femoral socket with the Tunnel Puncher or Femoral Guide, a cannulated holder for the Femoral Guide, and the Femoral Guide is inserted through the anteromedial portal. The notcher is tapped lightly with a mallet until the needle point of the notcher is flush with the femoral socket rim. The sheath window is positioned superiorly to provide clear visualization during screw insertion. The cannulated BioComposite Screw Handle with appropriate depth is inserted over the guide pin and into the sheath to engage the screw. The hole is inserted and the screw is driven to a depth of 25 mm with the appropriate depth markings. The #2 FiberWire sutures are removed.

A special saw blade with 7 mm depth stop is used to create a 25 mm length bone block. The Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A sheath is inserted in the femoral socket with the Tunnel Puncher or Femoral Guide, a cannulated holder for the Femoral Guide, and the Femoral Guide is inserted through the anteromedial portal. The notcher is tapped lightly with a mallet until the needle point of the notcher is flush with the femoral socket rim. The sheath window is positioned superiorly to provide clear visualization during screw insertion. The cannulated BioComposite Screw Handle with appropriate depth is inserted over the guide pin and into the sheath to engage the screw. The hole is inserted and the screw is driven to a depth of 25 mm with the appropriate depth markings. The #2 FiberWire sutures are removed.

A special saw blade with 7 mm depth stop is used to create a 25 mm length bone block. The Collared Pin and gently drilled until the reamer exits the femoral socket rim and the tendon fibers oriented posteriorly.

A sheath is inserted in the femoral socket with the Tunnel Puncher or Femoral Guide, a cannulated holder for the Femoral Guide, and the Femoral Guide is inserted through the anteromedial portal. The notcher is tapped lightly with a mallet until the needle point of the notcher is flush with the femoral socket rim. The sheath window is positioned superiorly to provide clear visualization during screw insertion. The cannulated...
through an anteromedial portal with the knee in 90˚ of flexion. Marking Hook attached to the Adapteur C-Ring is inserted for reproducible tibial tunnel placement. A left or right Target POPBone tendon harvest sites. Saw blades with 7 mm depth markings may be further smoothed with a Tunnel/Notchplasty Rasp.

The Arthrex Transtibial ACL Reconstruction System... for the single-incision technique to protect the ACL graft during femoral tunnel creation.

The 7 mm tip extension of the marking hook is placed against the anterior rim of the tunnel in extension. The guide pin is removed and replaced with a collared pin. A notch is created in the femoral socket with the Tunnel Notcher, a 25 mm length facilitates the graft to the femoral socket rim and the tendon fibers oriented posteriorly. The methylene blue line should be flush with the femoral socket through the tibial tunnel with the help of a probe. The methylene blue line is inserted through the tibial tunnel and the tibial tunnel diameter is selected. The knee should be cycled through a full range of motion to confirm graft position and condition. The graft is fixed in this position. Following femoral fixation, a titanium, Full Thread Bio-Interference or BioComposite Screw 1 to 2 mm smaller than the femoral socket diameter is selected. The knee should be cycled to at least 120˚ of flexion and at the 60˚ flexion position ligament stability tests should be carried out to confirm a successful reconstruction. The knee is placed to at least 120˚ of flexion and the 2 mm guide pin is inserted to the femoral socket through the anteromedial portal up to the second reference or BioComposite Screw 1 to 2 mm smaller than the femoral socket diameter. The knee is placed to a minimum of 120˚ of flexion and the 2 mm guide pin is inserted to the femoral socket through the anteromedial portal. The notcher may be placed through the tibial tunnel (not shown) for additional fixation. The 2.4 mm guide pin with suture eyelet is drilled through the guide and exits the lateral thigh. The 2.4 mm guide pin with suture eyelet exits the tibial tunnel cannula.

The appropriate diameter Hugel Reamer is inserted through the femoral tunnel and the over-the-top position. The PCL is preferred as an anatomic constant for precise, reproducible ACL tunnel and socket placement by referencing the femoral and tibial tunnel diameters and orientations of the graft to the PINs of the anatomic femur and tibia. The guide pin is inserted over the guide pin through the anteromedial portal with the help of a probe. The methylene blue line is inserted through the femoral tunnel and the tibial tunnel cannula is placed in the tibial tunnel to fix the graft. The Endoscopic Insertion of Interference Screws provides superior fixation of the graft against the posterior rim of the socket. The PCL is preferred as an anatomic constant for precise, reproducible ACL tunnel and socket placement by referencing the PINs of the anatomic femur and tibia. The guide pin is inserted over the guide pin through the anteromedial portal. A notch is created in the femoral socket with the Tunnel Notcher, a 25 mm length facilitates the graft to the femoral socket rim and the tendon fibers oriented posteriorly. The methylene blue line should be flush with the femoral socket through the tibial tunnel with the help of a probe. The methylene blue line is inserted through the tibial tunnel and the tibial tunnel diameter is selected. The knee should be cycled through a full range of motion to confirm graft position and condition. The graft is fixed in this position. Following femoral fixation, a titanium, Full Thread Bio-Interference or BioComposite Screw 1 to 2 mm smaller than the femoral socket diameter is selected. The knee should be cycled to at least 120˚ of flexion and the 2 mm guide pin is inserted to the femoral socket through the anteromedial portal up to the second reference or BioComposite Screw 1 to 2 mm smaller than the femoral socket diameter. The knee is placed to at least 120˚ of flexion and the 2 mm guide pin is inserted to the femoral socket through the anteromedial portal. The notcher may be placed through the tibial tunnel (not shown) for additional fixation. The 2.4 mm guide pin with suture eyelet is drilled through the guide and exits the lateral thigh. The 2.4 mm guide pin with suture eyelet exits the tibial tunnel cannula.
Marking Hook attached to the Adapteur C-Ring is inserted 7 mm from the PCL. The guide sleeve, marking hook and maximizing pin accuracy. The guide pin exits through the marking sleeve with drilling initiated prior to cortical bone contact, maximizing pin accuracy. The 7 mm tip extension of the marking hook is placed against the bone tendon harvest sites. A 2.4 mm Drill Tip Guide Pin is introduced into the Guide Pin sleeve 1 cm above the pes anserinus and 2.0 cm medial of the tibial tuberosity. The 7 mm tip extension of the marking hook is placed against the bone tendon harvest sites. A special graft harvesting guide facilitates precise, reproducible tunneling. The Arthrex Transtibial ACL Reconstruction System... the Gold Standard in BTB ACL reconstruction.

The Transtibial Femoral ACL Drill Guide allows precise guide pin placement by referencing the anatomic point to precisely produce a femoral tunnel with a 1 to 2 mm cortical backwall, avoiding fluid backflow out. Drilling at LLFA housing (if specifically designed) is carefully adjusted for the angle since technique to protect the ACL graft during screw insertion, reproducing exact anatomical references. Bone sockets are created by referencing the femoral bone tunnel and eliminates migration of the graft to the bone/tendon junction.

Special graft harvesting guides facilitate precise, reproducible tunneling. The notcher may be used to harvest the desired width of tendon. A 11 mm width may be used to harvest the desired width of tendon. After harvest, bone blocks are reamed with #2 FibreNailz, a diameter confirmed with the graft prep workstation. A methylene blue line is created at the bone/tendon junction. A special graft harvesting guide facilitates precise, reproducible tunneling. The Arthrex Transtibial ACL Reconstruction System... the Gold Standard in BTB ACL reconstruction.

If a standard tibial tunnel is desired, an appropriate diameter Full-Tunnel Internal Screw is inserted over the guide pin through the anteromedial portal with the sheath positioned to engage the screw. The knee is placed to at least 120˚ of flexion and the 2 mm Ratcheting Screwdriver Handle with appropriate shaft is inserted over the guide pin and into the sheath to engage the screw. The screw is inserted until the head of the screw is slightly countersunk into the bone. A methylene blue line is used to mark the tibial tunnel diameter is selected. The knee should be cycled through a full range of motion to confirm graft position and ligament stability tests should be carried out to confirm a successful reconstruction.
ACL Reconstruction System for BTB Grafts

Surgical Technique

Designed in conjunction with John C. Garrett, M.D., Atlanta, GA

Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts (with interference screws):

- Adapteur Drill Guide C-Ring AR-1875
- Graduated Guide Pin Sleeve for 2.4 mm Pins AR-1876
- Target POP Marking Hook, left AR-1866
- Target POP Marking Hook, right AR-1867
- Pin Simulator Tibial Marking Hook, 60˚ AR-1878GP-60
- Transtibial Femoral ACL Drill Guide (TTG), 7 mm AR-1801
- Parallel Guide Sleeve, 2.4 mm Pins AR-1245L
- Cannulated Headed Reamer, 9 mm AR-1409
- Cannulated Headed Reamer, 10 mm AR-1410
- Cannulated Headed Reamer, 11 mm AR-1411
- Cannulated Drill, 9 mm AR-1209L
- Cannulated Drill, 10 mm AR-1214L
- Cannulated Drill, 11 mm AR-1217L
- Graft Harvesting Cutting Guide, 8.5 mm width AR-1809
- Graft Harvesting Cutting Guide, 9.5 mm width AR-1810
- Graft Harvesting Cutting Guide, 10.5 mm width AR-1811
- Graft Harvesting Reamer AR-1420
- Parallel Graft Knife Handle AR-2285H
- Reusable Obturator for Tibial Tunnel Cannula AR-1807
- Tunnel/Notchplasty Rasp AR-1282
- Notchplasty and Graft Harvesting Osteotome, 8 mm AR-1830L
- Tapered Drills AR-1404
- Graft Prep Station for BTB Grafts: AR-1817
- Graft Prep Station Base AR-2950
- Graft Workstation Posts for BTB Grafts AR-1959
- Graft Sizing Block, 6-12 mm diameters in 0.5 increments AR-1886

Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts w/bioabsorbable PLLA interference screws:

- Ratcheting Screwdriver Handle AR-1999
- Cannulated Screwdriver Shaft for Bio-Interference Screw (femoral) AR-1997
- Cannulated Screwdriver Shaft for Bio-Interference Screw, Short (tibial) AR-1997SH
- Easy-In (stripped screw inserter) AR-1993
- Easy-Out (stripped screw extractor) AR-1994
- Tunnel Notcher for Bio-Interference Screw AR-1845

Graft Prep Station for BTB Grafts:

- Guide Pin w/Suture Eye, 2.4 mm AR-1108
- Drill Tip Guide Pin, 2.4 mm AR-1209L
- Guide Pin w/25 and 30 mm depth markings, 2.0 mm AR-1412
- Needle Guide for Bio-Interference Screw, 13 mm AR-1890
- Tapered Cannula AR-1107
- Buddele Cap AR-1103
- Marking Ruler, 153 mm AR-1404
- Sterile marking pen, sterile, single use AR-1205

ACL Disposables Kit, without See Blade (includes all items in AR-1895 except see blade):

- Parallel Graft Knife Blade AR-2285-08 - 11
- Guide Wire Introducer, 1.1 mm (for Bio-Interference Screw) AR-4069
- Guide Wire Introducer, 1.1 mm (for Bio-Interference Screw) AR-4069
- Guide Wire Introducer, 1.1 mm (for Bio-Interference Screw) AR-4069
- #2 FiberWire, 38 inches w/Tapered Needle, box of 12 ea. AR-7200

Tibial Tunnel Bone Graft Harvesting (optional):

- Core Reamer and Collared Pin, 9 mm, sterile, single use AR-1223S
- Core Reamer and Collared Pin, 10 mm, sterile, single use AR-1224S
- Core Reamer and Collared Pin, 11 mm, sterile, single use AR-1226S

Femoral Tunnel Bone Graft Harvesting (optional):

- OATS Harvester Set, 8 & 9 mm, sterile, single use AR-1980-08S
- OATS Harvester Set, 9 & 10 mm, sterile, single use AR-1980-09S
- OATS Harvester Set, 10 & 11 mm, sterile, single use AR-1980-10S

Refer to the online Product Catalog or comprehensive knee brochure (LB0115) for specific screw types and sizes, plus additional ACL reconstruction instrumentation accessories.

This description of technique is provided as an educational tool and intended to assist properly licensed medical professionals in the usage of specific Arthrex products. It is the professional responsibility of the licensed medical professional to make any final determinations in product usage and technique. In doing so, the medical professional should rely on their own training and experience and conduct a thorough review of pertinent medical literature and the product’s Directions For Use.
Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts w/titanium interference screws:

- Adapteur Drill Guide C-Ring AR-1875
- Graduated Guide Pin Sleeve for 2.4 mm Pins AR-1876
- Target POP Marking Hook, left AR-1866
- Target POP Marking Hook, right AR-1867
- Pin Simulator Tibial Marking Hook, 60˚ AR-1878GP-60
- Transtibial Femoral ACL Drill Guide (TTG), 7 mm AR-1801
- Parallel Guide Sleeve, 2.4 mm Pins AR-1245L
- Cannulated Headed Reamer, 9 mm AR-1409
- Cannulated Headed Reamer, 10 mm AR-1410
- Cannulated Headed Reamer, 11 mm AR-1411
- Cannulated Drill, 9 mm AR-1209L
- Cannulated Drill, 10 mm AR-1214L
- Cannulated Drill, 11 mm AR-1217L
- Graft Harvesting Cutting Guide, 8.5 mm width AR-1809
- Graft Harvesting Cutting Guide, 9.5 mm width AR-1810
- Graft Harvesting Cutting Guide, 10.5 mm width AR-1811
- Graft Harvesting Rasp AR-1830L
- Parallel Graft Knife Handle AR-2285H
- Reusable Obturator for Tibial Tunnel Cannula AR-1807
- Tunnel/Notchplasty Rasp AR-1282
- Notchplasty and Graft Harvesting Osteotome, 8 mm AR-1830L
- Tunnel Notcher AR-1845
- Jacob’s Chuck Handle AR-1415
- PinLock II Cannulated Screwdriver, 3.5 mm hex AR-1896
- ACL Instrumentation Case (with silicone mat base) AR-1817

Recommended Transtibial ACL Reconstruction Instrumentation for BTB Grafts w/bioabsorbable PLLA interference screws:

- Ratcheting Screwdriver Handle AR-1999
- Cannulated Screwdriver Shaft for Bio-Interference Screw (femoral) AR-1997
- Cannulated Screwdriver Shaft for Bio-Interference Screw, Short (tibial) AR-1997SH
- Easy-In (stripped screw inserter) AR-1993
- Easy-Out (stripped screw extractor) AR-1994
- Tunnel Notcher for Bio-Interference Screw AR-1845

Graft Prep Station for BTB Grafts:

- Graft Prep Station Base AR-2950
- Graft Workstation Posts for BTB Grafts AR-1959
- Graft Sizing Block, 6-12 mm diameters in 0.5 increments AR-1886

Transtibial ACL Reconstruction Disposables:

ACL Disposables Kit, with Saw Blade, includes:

- 2 each Threaded Fixation Pins
- 1 each #2 FiberWire, 38 inches w/Tapered Needle, box of 12 ea.
- Guide Pin w/25 and 30 mm depth markings, 2.0 mm
- Nitinol Guide Pin for Bio-Interference Screw, 1.1 mm
- Tibial Tunnel Cannula
- Backflow Cap
- Marking ruler, 153 mm
- Sterile marking pen, sterile, single use

ACL Disposables Kit, without Saw Blade (includes all the items in AR-1897S except a saw blade):

- 2 each Threaded Fixation Pins
- 1 each #2 FiberWire, 38 inches w/Tapered Needle, box of 12 ea.
- Guide Pin w/25 and 30 mm depth markings, 2.0 mm
- Nitinol Guide Pin for Bio-Interference Screw, 1.1 mm
- Tibial Tunnel Cannula
- Backflow Cap
- Marking ruler, 153 mm
- Sterile marking pen, sterile, single use

ACL Reconstruction for BTB Grafts

Surgical Technique

Designed in conjunction with John C. Garrett, M.D., Atlanta, GA

U.S. PATENT NOS. 5,269,786; 5,318,865; 5,397,307; 5,412,041; 5,623,684; 5,520,248; 5,785,714; 5,919,196; 6,183,246; 6,158,923

©2011, Arthrex Inc. All rights reserved. LT0111E

Transtibial ACL Reconstruction System for BTB Grafts

This description of technique is provided as an educational tool and should be used by properly licensed medical professionals in the use of Transtibial ACL Reconstruction System for BTB Grafts. As part of this professional usage, the medical professional must use their professional judgment in making any final determinations in product usage and technique. In doing so, the medical professional should rely on their own training and experience and should conduct a thorough review of pertinent medical literature and the product’s Directions For Use.

Refer to the online Product Catalog or comprehensive knee brochure (LB0115) for specific screw types and sizes, plus additional ACL reconstruction instrumentation accessories.